lunes, 20 de marzo de 2017

Mi divulgación en 2016

Aunque pueda parecerlo mirando sólo este blog, el año pasado hice un poco más de divulgación aparte de presentar el programa El Café Cuántico (¡cuya cuarta temporada ya ha comenzado, por cierto!). No obstante, con la escritura de la tesis cada vez ocupándome más tiempo, no me fue posible hablar de ellas aquí. Antes de reanudar los posts con las transcripciones de mis secciones en la tercera temporada del programa, quería hacer referencia en el blog a este par de cosas de 2016.

En primer lugar, el 10 de febrero se publicó en la página web Eleven-ThirtyEight (que recomiendo mucho seguir si eres fan de Star Wars) un post que escribí al estilo de Sergio L. Palacios sobre física en la ciencia ficción. El tema surgió porque un par de semanas antes apareció en la serie Star Wars Rebels un mundo llamado Concord Dawn que presentaba el aspecto de la siguiente imagen y, al conocerme en Twitter, el dueño me pidió escribir sobre si tal cosa sería posible:

Dado que la respuesta requería conocimientos de geología planetaria superiores a los míos, invoqué la ayuda de Nahúm Méndez Chazarra para reflexionar sobre el asunto (¡gracias, Nahúm!). El resultado fue un artículo en inglés cuyo título en español se traduciría como Las Cicatrices de Concord Dawn. Es posible que un día saque tiempo para poner en este blog una versión en castellano, pero de momento el texto puede leerse en el siguiente enlace:


Quiso además la casualidad que el siguiente episodio de Rebels mostrase unos cuantos detalles mucho más dados al análisis astrofísico y más cercanos a mi especialidad, así que tengo desde entonces en mente escribir una nueva entrada similar a la anterior, que parece que tuvo buena acogida. Como siempre, todo depende del tiempo del que disponga en el futuro, claro…


Lo siguiente que quería contar es que a principios de 2015, Rubén Lijó contactó con Naukas para pedir la colaboración, junto a Hablando de Ciencia y la Sociedad para el Avance del Pensamiento Crítico, en un proyecto de Vector Producciones llamado El Universo en 1 Minuto. El proyecto consistía en una serie de vídeos que explicasen conceptos científicos de forma muy breve, que irían acompañados de una ficha didáctica cada uno para poder ser usados en educación. La ayuda que Rubén solicitaba a los divulgadores científicos era un texto de unas 500 palabras para cada uno de los temas que propuso, que posteriormente serían guionizados para el contenido audiovisual. El tema que elegí yo fue la formación de las primeras galaxias, y el 9 de marzo de 2016 se publicó el resultado:



Todos los vídeos de la serie pueden verse en esta lista de reproducción. El texto completo que envié en su momento, en el que traté de proporcionar información extra y contexto para que el resumen de sólo un minuto fuera riguroso, puede leerse a continuación:
Tras formarse toda la materia y acabar en forma de átomos, ésta se distribuía de forma muy homogénea por el Universo, pero no completamente (como podemos ver en la imagen que tenemos de aquellos tiempos: el fondo cósmico de microondas). La variabilidad a escala cuántica en épocas muy tempranas había sido amplificada durante la Inflación hasta provocar que unas regiones tuviesen mayor densidad que otras. No mucho, sólo una diezmilésima parte más o menos densas que el promedio, pero suficiente para salirse de una situación de equilibrio. Conforme el espacio se iba expandiendo, la atracción gravitatoria sobre la materia provocó que los lugares que contenían más masa fuesen cayendo sobre sí mismos y atrayendo masa de los alrededores, mientras que los menos densos iban quedándose cada vez más vacíos.

La primera componente en sufrir este efecto fue la materia oscura, de la que no sabemos de qué está formada pero sí que comprende la mayor parte de la masa del universo, que no absorbe ni emite luz, y que no se comporta como un gas normal: no tiene que vencer prácticamente ninguna presión interna para colapsar por su propia gravedad. De este modo, las diferencias de densidad en la distribución de materia oscura, que iban en aumento, fueron formando un esqueleto tridimensional hacia el que luego iría cayendo la materia normal, cuando su temperatura disminuyó lo suficiente como para poder contraerse así.

Las mayores acumulaciones de masa se encontraban en los vértices de esta red cuya materia, tanto oscura como ordinaria, empezó a formar grumos que darían lugar a lo que ahora conocemos como galaxias. En el gas que colapsaba sobre sí mismo en estos grumos, en muchas ocasiones la dirección predominante en la que la nube rotaba se veía amplificada en la contracción a la vez que el gas que rotaba en otros ángulos era frenado por rozamientos, para dar lugar a estructuras en forma de disco y espirales (algo que no le pasaba a la materia oscura, que quedaría formando halos esferoidales de mayor tamaño con las galaxias en el centro). Pero en otros casos, varios de estos grumos colisionaban entre sí dando una estructura más aleatoria y esférica como resultado (futuras galaxias elípticas).

El gas, hecho de materia ordinaria y en su mayor parte hidrógeno y helio, se enfrió lo suficiente en muchos de estos grumos como para formar objetos compactos en sus regiones centrales: estrellas, planetas e incluso agujeros negros. Pero no todo fue a dar lugar a estos cuerpos. Las colisiones de estos grumos y galaxias en las acumulaciones y agrupaciones que originarían los cúmulos galácticos calentarían parte del gas dificultando su compresión, las estrellas aportarían energía al mismo mediante radiación y vientos, las más masivas de éstas estallarían como supernovas mandando gas a mucha velocidad de vuelta al espacio entre galaxias, y en el centro de las mismas habitan objetos que también tendrán su impacto. Aún no sabemos muy bien cómo ni en qué orden, pero prácticamente cada galaxia se formó con un agujero negro central que puede llegar a tener millones de veces la masa de nuestro Sol, a base de alimentarse de gas a sus alrededores. El proceso con el que estos agujeros negros se tragan el gas no es muy eficiente, no obstante, y hace que se conviertan en núcleos activos de galaxias, que expulsan mucho material caliente al exterior. Todos estos fenómenos hicieron que gran parte de la materia normal quedase fuera de las galaxias y a mucha temperatura, sin posibilidad de formar estrellas. Algunas galaxias perdieron la mayor parte de su gas en esta época con estos procesos, pero muchas otras conservaron parte del mismo hasta nuestros días, y han seguido formando estrellas hasta ahora.

(Sé que todo esto no cabrá en absoluto en sólo 1 minuto de vídeo, pero he tratado de destacar en negrita los datos importantes. Todo el resto está dedicado a explicarlos en más profundidad para que vosotros lo entendáis todo, y dar información adicional que tal vez quisierais mostrar en el vídeo.)

Os recomiendo mucho ver estos dos vídeos sobre la misma simulación cosmológica, tanto si decidís o podéis usar imágenes de las mismas como si no, porque ilustran muy bien todos los procesos que describo en el texto y ayudarán a guiaros en cuanto a qué información visual habría que incluir:
https://www.youtube.com/watch?v=NjSFR40SY58
https://www.youtube.com/watch?v=QSivvdIyeG4

Por supuesto, y como viene siendo habitual, hay vídeos, charlas, artículos e ideas de divulgación de años anteriores de las que aún no he dejado constancia en este blog. Trataré de ir incluyéndolas a lo largo de este año, si logro tiempo para todo.


jueves, 23 de febrero de 2017

Los exoplanetas de TRAPPIST-1

Ayer, la NASA dio una rueda de prensa para anunciar que un equipo internacional de científicos, usando entre otros telescopios el observatorio infrarrojo Spitzer, descubrió que un sistema solar a 39 años luz de distancia contenía siete planetas rocosos, con al menos tres de ellos en la zona de habitabilidad.
Representación artística del sistema estelar descubierto.
Crédito: ESO/N. Bartmann/spaceengine.org
Mi intención original era no escribir sobre el asunto y limitarme a compartir posts en español ya magníficamente explicados como el de Daniel Marín en el blog Eureka, la nota de prensa del ESONext de VozPópuli, o los artículos en inglés en la propia Nature, en The Planetary Society, Centauri Dreams (con más detalle en una segunda entrada), National GeographicSETI InstituteBad Astronomy, NOW.SPACE, etc. No obstante, al compartir en Facebook el artículo de Daniel Marín se me pidió explicarlo. Me ofrecí a responder preguntas, y esto es lo que Istel, quien hizo la petición original, quería conocer:

Pues mira, quiero saber qué implica. Quiero saber qué podemos esperar. ¿Se van a mandar sondas? ¿Cómo sabemos que es un planeta similar? Es un poco "supuesto", ¿No? ¿Cuánto tardaría en llegar una sonda? ¿Se podría mandar con la tecnología que hay? ¿Qué pasos se dan ahora?

Como acabé extendiéndome bastante en la respuesta, he decidido colgarlo aquí por si puede resultar útil a alguien más. Lo que sigue es una versión revisada y corregida de mis comentarios en la red social, con una explicación en la que evito en lo posible usar términos técnicos y en un tono coloquial. Voy a ir por partes, primero hablando del sistema en sí, y luego sobre su exploración posterior y la posibilidad de mandar sondas :)

De los siete planetas que se han encontrado en torno a esa estrella sabemos lo siguiente:
1) Su tamaño, porque se han detectado cuando pasan por delante de su estrella, y hacen que nos llegue menos luz de la misma. Cuanto más grandes son, más luz taparán. Todos tienen tamaños parecidos a la Tierra, y esto es prometedor porque si fuesen más grandes podrían ser planetas gaseosos o con atmósfera muy densa que hiciera menos probable la vida en ellos. Si son como la Tierra, Venus o Marte, viene mejor.
2) Su "año", lo que tardan en dar una órbita completa a su estrella. Esto nos dice cómo de lejos están de su "sol", y por tanto qué temperatura tienen. Y resulta que entre 3 y 4 de esos planetas estarían a una temperatura de entre 0 °C y 100 °C, de modo que si tienen atmósfera y agua, ¡ese agua podría estar en estado líquido formando océanos en sus superficies!
3) Sus masas. La estrella de ese sistema es bastante más pequeña y fría que el Sol (de hecho tiene el tamaño de Júpiter nada más), y los planetas están tan cerca unos de otros que se influyen entre ellos por la gravedad. Esto hace que sus órbitas sufran ligeros cambios que también se han medido, y las masas se obtienen de ahí. Pero lo importante es que sus masas permiten obtener…
4) Sus densidades. Y esto nos dice de qué están hechos los planetas, lo que también influye en su habitabilidad. Resulta que estos planetas tienen una composición bastante parecida a la de la Tierra, aunque un par de ellos tienen densidad menor. Parece que estos últimos se formaron con bastante proporción de hielo, no sólo roca, y al estar en la zona de 0-100 °C podrían tener océanos enormes cubriendo toda la superficie, de cientos de kilómetros de profundidad (los de la Tierra sólo tienen 11 km como máximo, y en promedio unos 4 km o así).

Ilustración de los tamaños relativos de los planetas descubiertos. Crédito: NASA/R. Hurt/T. Pyle
Una cosa importante es que al estar tan cerca de su estrella, los efectos de marea hacen que los planetas muestren siempre la misma cara hacia ésta, igual que la Luna nos muestra la misma cara a nosotros. De modo que una cara de estos planetas estará siempre iluminada, y en la otra será siempre de noche. Si el planeta tiene bastante tierra firme, tal vez sólo sea habitable en las regiones entre el día y la noche eterna. Si está cubierto de océanos, seguramente el lado nocturno sea todo hielo.
Pero a su vez, las vistas son espectaculares. Desde la Tierra vemos Venus, Marte, Júpiter o Saturno como puntos brillantes en el cielo y ya. Desde uno de los planetas de TRAPPIST-1, cuando los otros están cerca se ven tan grandes como nosotros vemos la Luna, o más.

Ilustración especulativa del posible paisaje en TRAPPIST-1f. Crédito: NASA/JPL-Caltech/T. Pyle (IPAC)
En cuanto a la importancia del descubrimiento, hay que saber que algo que llevamos buscando desde que empezamos a estudiar exoplanetas es uno como la Tierra, para saber si hay vida en otros mundos. Hasta hace no mucho, cuando se descubría un planeta rocoso en la zona habitable los científicos se entusiasmaban, porque se añadía un mundo más que explorar en busca de esto. Sin embargo, la mayoría están demasiado lejos para nuestra instrumentación actual. En torno a la estrella más cercana a la Tierra, Próxima Centauri a 4 años luz, se ha descubierto un planeta rocoso también con temperatura entre 0 °C y 100 °C, pero no pasa por delante de su estrella visto desde la Tierra. Si pasase, podríamos analizar la luz que atraviesa la atmósfera del planeta antes de llegar a nosotros, y ver qué compuestos de la misma han absorbido parte de esa luz. Si hay vida en un planeta, es posible que deje rastro en la atmósfera (por ejemplo, en la Tierra todo el oxígeno atmosférico lo produjo la vida, y además la vida sigue produciendo metano, que sólo dura unos 8 años antes de reaccionar con compuestos de oxígeno y desaparecer. Si hay metano en una atmósfera como la nuestra, es que algo lo está reponiendo). En la atmósfera también se puede detectar el agua, que produce una señal característica.

Y este sistema está a 39 años luz, lo cual es relativamente cerca (hay otros descubrimientos a cientos o miles de años luz), y pronto los telescopios podrán estudiarlo. Justo el año que viene se lanza al espacio un telescopio infrarrojo llamado James Webb, que tiene entre sus objetivos precisamente esto. El tener un sistema con tantos planetas rocosos tan cerca y tantos en la zona habitable nos permite estudiar muchos al mismo tiempo. Y además, si ha surgido vida en uno de los habitables, es posible que todos la tengan, porque los impactos de meteorito la transportarían de uno a otro (!).

Respecto al tema de mandar algo allí… bueno, en estos momentos se está empezando a planificar cómo mandar sondas a Próxima Centauri (o Alfa Centauri en sí, ya que Próxima está más cerca pero forma parte de un sistema triple junto con Alfa Centauri A y Alfa Centauri B). La opción que se está estudiando se llama Breakthrough Starshot (sobre la que Daniel Marín también escribió), y consiste en velas de 4x4 metros y muy finas que tendrían toda la electrónica y sensores en un chip para que todo pese sólo unos gramos, que serían impulsadas desde Tierra con pulsos de láser. Cuanto menos pesen más rápido se las podrá acelerar, y antes llegarán. Pero seguramente tarden como poco unos 20 años en llegar a Alfa Centauri. De modo que a TRAPPIST-1, que está a 39 años luz, con nuestra tecnología actual a lo mejor tardarían 200 años. No resulta práctico a corto plazo. Quizás en un futuro :)

Algo que también podría resultar útil para entender esta noticia es el vídeo siguiente, una charla de 10 minutos en la que expliqué en 2012 las técnicas que usamos para detectar y estudiar exoplanetas con nuestra tecnología actual:



Y por último, como me gustó bastante cuando la vi en la rueda de prensa, enlazo el vídeo con la representación artística en 3D de la posible apariencia de los siete planetas de TRAPPIST-1. Crédito: NASA/JPL-Caltech.



martes, 3 de enero de 2017

Doctor en Física

Todo salió bien. El pasado 16 de diciembre defendí con éxito mi tesis doctoral, Gravitational Lensing: the Structure of Quasars and Galaxies, y obtuve así el grado de Doctor en Física por la Universidad de Valencia.


La tesis en sí puede descargarse gratuitamente desde el repositorio RODERIC de la Universidad de Valencia, en el siguiente enlace:


En ella hay unas páginas iniciales con agradecimientos (y algunos de quienes leáis esto os podéis encontrar en ellos), seguidas de un resumen en castellano de 4000 palabras de la tesis entera (necesario al estar el resto en inglés), y después una introducción con los conceptos necesarios para entender la investigación en sí. El trabajo que realicé estos cinco años se estructura en cuatro artículos científicos, tres de ellos ya publicados y uno aún en proceso. Los tres artículos publicados son los siguientes:

Structure of the Accretion Disk in the Lensed Quasar Q2237+0305 from Multi-epoch and Multi-wavelength Narrowband Photometry. Muñoz, J. A.; Vives-Arias, H.; Mosquera, A. M.; Jiménez-Vicente, J.; Kochanek, C. S.; Mediavilla, E. (2016), ApJ, 817, 155

Observations of the Lensed Quasar Q2237+0305 with CanariCam at GTC. Vives-Arias, H.; Muñoz, J. A.; Kochanek, C. S.; Mediavilla, E.; Jiménez-Vicente, J. (2016), ApJ, 831, 43

Observations of radio-quiet quasars at 10-mas resolution by use of gravitational lensing. Jackson, Neal; Tagore, Amitpal S.; Roberts, Carl; Sluse, Dominique; Stacey, Hannah; Vives-Arias, Hector; Wucknitz, Olaf; Volino, Filomena (2015), MNRAS, 454, 287


Mi familia obtuvo fotos y vídeos durante la defensa. Comparto algunas aquí:




Y los vídeos los he unido para que pueda verse todo junto, en este enlace o a continuación. Hubo una parte en la que sólo disponemos de sonido y no imagen, así que en ese fragmento (de 5:56 a 10:02) se muestran las imágenes de la presentación que iba siguiendo.




Para la tesis y su defensa hicieron falta algunas representaciones artísticas de los objetos o fenómenos involucrados en los sistemas que estudio, así que acabé por hacerlas yo mismo. La primera de ellas ilustra el objeto principal de mi investigación: sistemas en los que la luz emitida por un quásar se ve desviada por una galaxia que actúa como lente gravitacional, haciendo que observemos cuatro imágenes del mismo en vez de sólo una. El fenómeno de lente gravitacional lo utilizamos para estudiar tanto las propiedades del quásar en sí como la distribución de materia oscura en el halo de la galaxia lente (ilustrada en gris).


En el centro del quásar se sitúa un agujero negro supermasivo con un disco de acreción formado por materia muy caliente. En nuestra investigación medimos un radio de varios días luz para este disco, que está a su vez rodeado de nubes de gas caliente e ionizado.


El disco de acreción y otra materia en esas regiones centrales son los que emiten las ingentes cantidades de radiación que proporcionan al quásar su increíble luminosidad. Más lejos se encuentra una acumulación de polvo en forma de toroide (de dónut) que emite luz infrarroja, una región bicónica de gas excitado e ionizado que parte de la abertura central del toroide, y en un 10% de los casos dos chorros de materia relativista que se detectan por las emisiones de radio que dieron a los quásares originalmente su nombre.


Es posible que siga realizando ilustraciones de este tipo, y en ese caso las compartiré. De momento aún tengo pendiente escribir posts de divulgación explicando mi trabajo en más detalle, y volver a la divulgación científica en general mientras terminamos el cuarto artículo y mando solicitudes a las diversas universidades que ofrecen posiciones postdoctorales relacionadas con mi investigación. No dudéis en preguntar si queréis saber algo ya o no quedan cosas claras debido a lo fragmentado del vídeo, no obstante.